A Riemann-Roch for Number Fields

Brian Ton

Basics

An Analogue of Riemann-Roch

Grothendieck-Riemann-Roch

Conclusion

Motivations

- Algebraic number theory for number fields (finite extensions of K/\mathbb{Q}) is typically built up in an ideal-theoretic point of view
 - ▶ Dedekind domains, fractional ideals, ideal factorization, etc.
- ▶ One other approach is via a valuation-theoretic point of view, using the data from finite places (corresponding to prime ideals of \mathcal{O}_K) and infinite places (arising from embeddings of K into \mathbb{R} and \mathbb{C} .
 - ► We will go so far as to look at an "analogue" of the Riemann Roch Theorem for number fields

Basic Definitions

Definition (Prime)

A prime (or place) $\mathfrak p$ of an algebraic number field K is a class of equivalent valuations on K. The nonarchimedean equivalence classes of valuations are called finite primes and the archimedean ones infinite primes.

Note: we will denote infinite primes by the notation $\mathfrak{p} \mid \infty$ and the finite ones by $\mathfrak{p} \nmid \infty$.

To each prime \mathfrak{p} , we associate a homomorphism $v_{\mathfrak{p}}: K^{\times} \to \mathbb{R}$. If \mathfrak{p} is finite, then take $v_{\mathfrak{p}}$, to be the \mathfrak{p} -adic valuation, normalized by $v_{\mathfrak{p}}(K^{\times}) = \mathbb{Z}$. If $\mathfrak{p} \mid \infty$, then $v_{\mathfrak{p}}(a) = -\log |\tau a|$, where $\tau : K \to \mathbb{C}$ is an embedding which defines \mathfrak{p} .

Definition (Replete Ideal)

A replete ideal is an element of the group

$$J(\overline{\mathcal{O}_K}) := J(\mathcal{O}_K) \times \prod_{\mathfrak{p} \mid \infty} \mathbb{R}_+^{\times}$$

where \mathbb{R}_+^{\times} denotes the multiplicative group of positive real numbers and $J(\mathcal{O})$ denotes the group of fractional ideals.

An arbitrary element of $J(\overline{\mathcal{O}_K})$ looks like

$$\mathfrak{a} = \prod_{p \nmid \infty} \mathfrak{p}^{\mathsf{v}_{\mathfrak{p}}} \times \prod_{p \mid \infty} \mathfrak{p}^{\mathsf{v}_{\mathfrak{p}}} =: \prod_{\mathfrak{p}} \mathfrak{p}^{\mathsf{v}_{\mathfrak{p}}}$$

(a tuple) where $v_{\mathfrak{p}} \in \mathbb{Z}$ for $\mathfrak{p} \nmid \infty$ and $v_{\mathfrak{p}} \in \mathbb{R}$ for $\mathfrak{p} \mid \infty$. Here, to unify notation, $\mathfrak{p}^{v_{\mathfrak{p}}} := e^{v_{\mathfrak{p}}}$ when $\mathfrak{p} \mid \infty$. Let $\mathfrak{a}_f := \prod_{\mathfrak{p} \nmid \infty} \mathfrak{p}^{v_{\mathfrak{p}}}$ denote the "finite" part and $\mathfrak{a}_{\infty} = \prod_{\mathfrak{p} \mid \infty} \mathfrak{p}^{v_{\mathfrak{p}}}$ denote the "infinite" part, so that $\mathfrak{a} = \mathfrak{a}_f \times \mathfrak{a}_{\infty}$.

Replete Picard Group

Continuing from the last slide, to each $a \in K^{\times}$, associate the replete principal ideal

$$[a] = \prod_{\mathfrak{p}} \mathfrak{p}^{v_{\mathfrak{p}}(a)} = (a) imes \prod_{\mathfrak{p} \mid \infty} \mathfrak{p}^{v_{\mathfrak{p}}(a)}$$

These principal replete ideals form a subgroup $P(\overline{\mathcal{O}_K})$ of $J(\overline{\mathcal{O}_K})$. We can now define the

Definition (Replete Picard Group)

The factor group

$$\operatorname{Pic}(\overline{\mathcal{O}_K}) = J(\overline{\mathcal{O}_K})/P(\overline{\mathcal{O}_K})$$

is called the replete ideal class group, or the replete Picard group.

Notice the analogy with the "regular" ideal class group!

Brian Ton

Riemann-Roch for Number Fields

Replete Divisors

Definition (Replete Divisor)

A replete divisor (or Arakelov divisor) of K is a formal sum

$$D=\sum_{\mathfrak{p}}v_{\mathfrak{p}}\mathfrak{p}$$

with $\nu_{\mathfrak{p}} \in \mathbb{Z}$ for $\mathfrak{p} \nmid \infty$, $\nu_{\mathfrak{p}} \in \mathbb{R}$ for $\mathfrak{p} \mid \infty$ and $\nu_{\mathfrak{p}} = 0$ for almost all \mathfrak{p} .

Let $\operatorname{Div}(\overline{\mathcal{O}_K})$ denote the group of these replete divisors. Define $\operatorname{div}: K^\times \to \operatorname{Div}(\overline{\mathcal{O}_K})$ to be $a \mapsto \sum_{\mathfrak{p}} v_{\mathfrak{p}}(a)\mathfrak{p}$. The image is the group of replete principal divisors, denoted $\mathcal{P}(\overline{\mathcal{O}})$. Now, define the

Definition (Arakelov Class Group)

$$CH^1(\overline{\mathcal{O}_K}) = \operatorname{Div}(\overline{\mathcal{O}_K})/\mathcal{P}(\overline{\mathcal{O}_K})$$

Proposition (Ideals and Divisors)

$$\mathrm{div}: J(\overline{\mathcal{O}_K}) \to \mathrm{Div}(\overline{\mathcal{O}_K}), \quad \prod_{\mathfrak{p}} \mathfrak{p}^{\nu_{\mathfrak{p}}} \mapsto \sum_{\mathfrak{p}} -\nu_{\mathfrak{p}} \mathfrak{p}$$

and

$$\mathrm{Div}(\overline{\mathcal{O}_K}) \to J(\overline{\mathcal{O}_K}), \quad \sum_{\mathfrak{p}} \nu_{\mathfrak{p}} \mapsto \prod_{\mathfrak{p}} \mathfrak{p}^{-\nu_{\mathfrak{p}}}$$

are mutually inverse isomorphisms between $J(\overline{\mathcal{O}_K})$ and $\mathrm{Div}(\overline{\mathcal{O}_K})$, which induce a (topological) isomorphism $\mathrm{div}: \mathrm{Pic}(\overline{\mathcal{O}_K}) \to CH^1(\overline{\mathcal{O}_K})$

What's the point? Much of the theory we developed via ideals can be viewed through the language/theory of divisors (e.g. Dirichlet's Unit Theorem / Finiteness of the Class Group)!

To build towards our analogue of the Riemann-Roch theorem, we note that we have a similar setup: recall that a divisor on a Riemann surface X is a finite formal sum $D = \sum_{P \in X} a_P P$, where the a_P encodes order of a pole / zero at P for the principal divisors $\operatorname{div}(f) = \sum_{P \in X} a_P P$. Then,

$$H^0(D) := H^0(X, \mathcal{O}(D))$$

$$:= \{ \text{rational functions } f \text{ on } X : \text{ord}_P(f) \ge -a_P \}$$

and the Riemann-Roch theorem tells us that

$$\dim H^0(D) - \dim H^1(D) = \deg(D) + 1 - g$$

where g is the genus of the curve and the left-hand side $\dim H^0(D) - \dim H^1(D) =: \chi(D)$ is the Euler characteristic of X.

Our Analogues

We define our analogues in a pseudo-ad-hoc way. For each replete ideal $\mathfrak{a}=\prod_{\mathfrak{p}}\mathfrak{p}^{v_{\mathfrak{p}}}$ of K, define

$$\chi(\mathfrak{a}) = -\log \operatorname{vol}(\mathfrak{a})$$

where $\operatorname{vol}(\mathfrak{a}) = \mathcal{N}(\mathfrak{a}_{\infty}) \operatorname{vol}(\mathfrak{a}_f)$ and

$$H^0(\mathfrak{a}) = \{ f \in K^{\times} : v_{\mathfrak{p}}(f) \ge v_{\mathfrak{p}}, \, \forall \mathfrak{p} \}$$

(which is a finite set, using some Minkowski Theory) and

$$\dim H^0(\mathfrak{a}) = \log \frac{\# H^0(\mathfrak{a})}{2^r (2\pi)^s}$$

We define the genus of a number field K is defined to be the real number

$$g = g_K = \dim H^0(\mathcal{O}_K) - \chi(\mathcal{O}_K) = \log \frac{\#\mu(K)\sqrt{|d_K|}}{2^r(2\pi)^s}$$

Riemann Roch Theorem

With these definitions, we arrive at the following analogue of the Riemann-Roch theorem:

Theorem (Arithmetic Riemann-Roch)

For every replete ideal a of K, one has

$$\chi(\mathfrak{a}) = \deg(\mathfrak{a}) + \dim H^0(\mathcal{O}_K) - g$$

With some extra work (using Minkowski Theory and a theorem due to Lang on the asymptotics of $\#H^0(\mathfrak{a}^{-1})$), one can show the following analogue of the strong Riemann-Roch formula (defining $\dim H^0(D) = \log \frac{\#H^0(D)}{2^r(2\pi)^s}$ and $\chi(D) = \chi(\mathcal{O}(D))$):

$$\dim H^0(D) = \deg(D) + \dim H^0(\mathcal{O}_K) - g + i(D)$$

where $i(D) = O(e^{-\frac{1}{n}\deg(D)})$. In particular, $i(D) \to 0$ as $\deg(D) \to \infty$, so that i(D) is an analogue of $\dim H^1(D)$.

Brian Ton Riemann-Roch for Number Fields

Riemann Hurwitz

We define

Definition (Dedekind's Complementary Module)

Let L/K be a finite extension. Then,

$$\mathscr{C}_{L|K} = \{x \in L : \operatorname{Tr}(x\mathcal{O}_L) \subseteq \mathcal{O}_K\} \simeq \operatorname{Hom}_{\mathcal{O}_K}(\mathcal{O}_L, \mathcal{O}_K)$$

Under this definition, we can obtain the following analogue for the Riemann-Hurwitz formula.

Proposition

For L|K a finite extension, and g_L and g_K are the genus of L and K, respectively, then

$$g_L - \dim H^0(\mathcal{O}_L) = [L : K](g_K - \dim H^0(\mathcal{O}_K)) + \frac{1}{2} \deg \mathscr{C}_{L|K}$$

In the previous section, we saw a (very) ad-hoc way to arrive at our Riemann–Roch theorem, a special case of a far more general Grothendieck–Riemann–Roch theorem. We will look at this theory for the case of \mathcal{O}_K -modules.

Let K/\mathbb{Q} be a finite extension, and let

$$K_{\mathbb{C}} = K \otimes_{\mathbb{Q}} \mathbb{C}$$

be the complexification of K. Let F be the the generator of $\mathrm{Gal}(\mathbb{C}/\mathbb{R})$. On an \mathcal{O}_K module M and its complexification $M_{\mathbb{C}}=M\otimes_{\mathbb{Z}}\mathbb{C}$, we define the action of F on $M_{\mathbb{C}}$ by $F(a\otimes x)=a\otimes \overline{x}$. This leads us to the definition

Definition (Metrized $\mathcal{O}_{\mathcal{K}}$ Modules)

A metrized \mathcal{O}_K -module is a finitely generated \mathcal{O}_K -module M with an F-invariant hermitian metric on $M_{\mathbb{C}}$.

where we note that an F-invariant hermitian metric on $M_{\mathbb{C}}$ is a $\underline{K_{\mathbb{C}}}$ -linear form $\langle,\rangle_M:M_{\mathbb{C}}\times M_{\mathbb{C}}\to K_{\mathbb{C}}$ satisfying $\overline{\langle x,y\rangle}_M=\langle y,x\rangle_M$ and $F\langle x,y\rangle_M=\langle Fx,Fy\rangle_M$

Brian Ton

Riemann-Roch for Number Fields

Denote by $\{M\}$ the isometry class of a metrized \mathcal{O}_K -module M. Now, we define

$$F_0(\overline{\mathcal{O}_K}) = \bigoplus_{\{M\}, M \text{ proj.}} \mathbb{Z}\{M\}, \quad F^0(\overline{\mathcal{O}_K}) = \bigoplus_{\{M\}, M \text{ f.g.}} \mathbb{Z}\{M\}$$

Definition (Grothendieck Groups)

The quotient groups

$$K_0(\overline{\mathcal{O}_K}) = F_0(\overline{\mathcal{O}_K})/R_0(\overline{\mathcal{O}_K}), \quad K^0(\overline{\mathcal{O}_K}) = F^0(\overline{\mathcal{O}_K})/R^0(\overline{\mathcal{O}_K})$$
 are called the replete Grothendieck groups of \mathcal{O}_K , where $R_0(\overline{\mathcal{O}_K})$ and $R^0(\overline{\mathcal{O}_K})$ are the subgroups of $F_0(\overline{\mathcal{O}_K})$ and $F^0(\overline{\mathcal{O}_K})$ generated by elements $\{M'\} - \{M\} + \{M''\}$ which arise from a short exact sequence $0 \to M' \to M \to M'' \to 0$ of projective $/$ f.g. metrized \mathcal{O}_K -modules.

Notice that under this definition, $\{M \oplus N\} = \{M\} + \{N\}$ in $K_0(\overline{\mathcal{O}_K})$ and $K^0(\overline{\mathcal{O}_K})$!

There are a few nice properties of the Grothendieck Groups. Firstly, the tensor product induces a ring structure on $K_0(\overline{\mathcal{O}_K})$: $\{M\}\{M'\}=\{M\otimes_{\mathcal{O}_K}M'\}$, and $K^0(\mathcal{O}_K)$ becomes a $K_0(\mathcal{O}_K)$ module. There is an important theorem relating them:

Proposition (The Poincaré Isomorphism)

The map $K_0(\overline{\mathcal{O}_K}) \to K^0(\overline{\mathcal{O}_K})$ given by $\{M\} \mapsto \{M\}$ defines a homomorphism (called the Poincaré homomorphism). In particular, this is a $K_0(\overline{\mathcal{O}_K})$ -module isomorphism.

The Grothendieck ring $K_0(\overline{\mathcal{O}_K})$ is equipped with a canonical surjective homomorphism $\mathrm{rk}: K_0(\overline{\mathcal{O}_K}) \to \mathbb{Z}$ given by $\{M\} \mapsto \dim_K(M \otimes_{\mathcal{O}_K} K)$ with $\ker(\mathrm{rk}) = I$. One can show $I^2 = 0$.

Define the graded Grothendieck group

$$\operatorname{gr} K_0(\overline{\mathcal{O}_K}) = \mathbb{Z} \oplus I$$

This becomes a ring after defining xy = 0 for $x, y \in I$. The additive homomorphism

$$c_1: K_0(\overline{\mathcal{O}_K}) \to I, \quad c_1(\{M\}) = \{M\} - \operatorname{rk}(\{M\})$$

is called the first Chern Class. The mapping

$$\operatorname{ch}: K_0(\overline{\mathcal{O}_K}) \to \operatorname{gr} K_0, \quad \operatorname{ch}(\{M\}) = \operatorname{rk}(\{M\}) + c_1(\{M\})$$

is called the Chern character. One can show that

ch : $K_0(\overline{\mathcal{O}_K}) \to \operatorname{gr} K_0(\overline{\mathcal{O}_K})$ is an isomorphism of rings. Under the isomorphism det : $I \xrightarrow{\sim} \operatorname{Pic}(\overline{\mathcal{O}_K})$, we obtain that

$$\operatorname{ch}: K_0(\overline{\mathcal{O}_K}) \to \mathbb{Z} \oplus \operatorname{Pic}(\overline{\mathcal{O}_K}) =: \operatorname{CH}(\overline{\mathcal{O}_K})$$
 is also an isomorphism.

Now that we know about metrized \mathcal{O}_K modules, we want to figure out the relationship between metrized \mathcal{O}_L and \mathcal{O}_K modules when L/K is a finite extension. Indeed, the inclusion $\mathcal{O}_K \to \mathcal{O}_L$ and $\operatorname{Hom}(L,\mathbb{C}) \to \operatorname{Hom}(K,\mathbb{C}), \sigma \mapsto \sigma|_K$ induce two canonical homomorphisms

$$i^*: K_0(\overline{\mathcal{O}_K}) \to K_0(\overline{\mathcal{O}_L}), \quad i_*: K_0(\overline{\mathcal{O}_L}) \to K_0(\overline{\mathcal{O}_K})$$

where $i^*(\{M\}) = [M \otimes_{\mathcal{O}_K} \mathcal{O}_L]$ and $i_*(\{M\}) = \{M\}$. The Grothendieck-Riemann-Roch theorem's goal is to compute the Chern character $\operatorname{ch}(i_*M)$ for a projective metrized \mathcal{O}_L -module in terms of $\operatorname{ch}(M)$.

From the definition of i_* , we get the following commuting diagram

$$K_0(\overline{\mathcal{O}_L}) \xrightarrow{\mathrm{rk}} \mathbb{Z}$$

$$\downarrow_{i_*} \qquad \qquad \downarrow_{[L:K]}$$
 $K_0(\overline{\mathcal{O}_K}) \xrightarrow{\mathrm{rk}} \mathbb{Z}$

Therefore, i_* induces a homomorphism $i_*: I(\overline{\mathcal{O}_L}) \to I(\overline{\mathcal{O}_K})$. which further induces $i_*: \operatorname{gr} K_0(\overline{\mathcal{O}_L}) \to \operatorname{gr} K_0(\overline{\mathcal{O}_K})$ called the Gysin map. We now consider the following diagram

$$K_0(\overline{\mathcal{O}_L}) \stackrel{\operatorname{ch}}{\longrightarrow} \operatorname{gr} K_0(\overline{\mathcal{O}_L})$$

$$\downarrow^{i_*} \qquad \qquad \downarrow^{i_*}$$
 $K_0(\overline{\mathcal{O}_K}) \stackrel{\operatorname{ch}}{\longrightarrow} \operatorname{gr} K_0(\overline{\mathcal{O}_K})$

But this doesn't commute!

Fortunately, the situation on the previous slide can be corrected, which will be provided via the module of Kähler differentials $\Omega^1_{\mathcal{O}_L|\mathcal{O}_K}=J/J^2$, where J is the kernel of $\mathcal{O}_L\otimes_{\mathcal{O}_K}\mathcal{O}_L\to\mathcal{O}_L$. We now define the Todd class $\mathrm{Td}(\mathcal{O}_L|\mathcal{O}_K)=1-\frac{1}{2}c_1([\Omega^1_{\mathcal{O}_L|\mathcal{O}_K}])$ (note that $\mathrm{Td}(\mathcal{O}_L|\mathcal{O}_K)\not\in\mathrm{gr}K_0(\overline{\mathcal{O}_L})$ itself). We now have the theorem:

Theorem (Grothendieck-Riemann-Roch)

The diagram

$$\begin{array}{ccc} \mathcal{K}_0(\overline{\mathcal{O}_L}) & \xrightarrow{\mathrm{Td}(\mathcal{O}_L|\mathcal{O}_K)\mathrm{ch}} \mathrm{gr} \; \mathcal{K}_0(\overline{\mathcal{O}_L}) \\ & & \downarrow i_* & & \downarrow i_* \\ \mathcal{K}_0(\overline{\mathcal{O}_K}) & \xrightarrow{\mathrm{ch}} & \mathrm{gr} \; \mathcal{K}_0(\overline{\mathcal{O}_K}) \end{array}$$

commutes!

Brian Ton

Riemann-Roch for Number Fields

What have we accomplished? We have integrated the basic theorems of algebraic number theory as a special case of a more general viewpoint in geometry. In particular, we were looking at the scheme $X = \operatorname{Spec}(\mathcal{O}_K)$, \mathcal{O}_K -modules as metrized vector bundles, $\Omega^1_{\mathcal{O}_L|\mathcal{O}_K}$ as the cotangent element, the morphism of schemes $Y = \operatorname{Spec}(\mathcal{O}_L) \to X$, etc.

[NS13] J. Neukirch and N. Schappacher. Algebraic Number Theory. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2013. ISBN: 9783662039830. URL: https: //books.google.com/books?id=hS3qCAAAQBAJ.